Statistical errors for the number of detected particles or hits $(\pi^0 A_{LL})$ and many others Analysis Notes in mind) It is well known that, for a given integrated luminosity¹, the number of detected² events, M, is Poissonian distributed. But, in inclusive measurements³, the distribution of the number of detected **particles**⁴, N, generally is not a Poissonian one. There are two sources for N fluctuations: 1) fluctuations of the particle multiplicity n per event due to physics, limited acceptance, detecting and reconstruction efficiencies, etc; 2) fluctuations of the number of events, M, for a given integrated luminosity. The general formula, which describes N-fluctuations in terms of σ_N (RMS), is as follows: $\sigma_N^2 = \sigma_n^2 \overline{M} + \overline{n}^2 \sigma_M^2$, where \overline{n} and σ_n are for the mean particle multiplicity per event and the width (RMS) of the multiplicity distribution; \overline{M} and $\sigma_{\scriptscriptstyle M}$ are for the mean number of events for a given integrated luminosity and the RMS of this M distribution. Since the number of events M is Poissonian distributed, then $\sigma_M = \sqrt{\overline{M}} \approx \sqrt{M_{sample}}$, where $M_{\it sample}$ is the number of actually detected events $^{\it sample}$ which can be used and normally is used as an estimate for \overline{M} . Then, formula for $\sigma_{\scriptscriptstyle N}$ transforms to the $\sigma_N^2 = \sigma_n^2 \overline{M} + \overline{n}^2 \overline{M} = (\sigma_n^2 + \overline{n}^2) \overline{M}$, or $\sigma_N = \sqrt{(\sigma_n^2 + \overline{n}^2) \overline{M}} \approx \sqrt{(\sigma_n^2 + \overline{n}^2) M_{sample}}$. For \overline{n} and σ_n estimates, the mean and RMS of the measured multiplicity distributions could be taken⁶. The experimental π^0 multiplicity distributions in our measurements are shown in Fig. 14. The relative statistical errors, σ_N/N , in various P_T bins, obtained using the formulae above and data from Fig. 14, are shown in Table 3. ^{1 ...} or exposition time. ² ... and filtered at either trigger, or analysis stages, or both ... ^{3 ...} or, what is the same, with the inclusive particle and/or hit counting. 4 or hits of interest, possibly including background due to misidentifi ⁴ ... or hits of interest, possibly including background due to misidentification, combinatorics, etc. ⁵ For example, in a particular run. ⁶ The hit multiplicity distributions become close to Poissonians if the multiplicity fluctuations are **primarily** due to, for example, small detector acceptance or similar. Then, $\sigma_n \approx \sqrt{\overline{n}}$, and $\sigma_N \approx \sqrt{\left(\overline{n} + \overline{n}^2\right)} \overline{M} \approx \sqrt{\overline{n} \left(1 + \overline{n}\right)} \overline{M} \approx \sqrt{\left(1 + \overline{n}\right)} \overline{N} \approx \sqrt{\left(1 + \overline{n}\right)} N_{sample}$. In the limiting case of $\overline{n} \ll 1$, $\sigma_N \approx \sqrt{\overline{N}} \approx \sqrt{N_{sample}}$. It should be underlined that inequality $\overline{n} \ll 1$ **does not** always mean the Poissonian multiplicity distribution and $\sigma_n \approx \sqrt{\overline{n}}$. The example of such a case is using a **relaxed trigger** for the rare event selection.